Concurrent tonotopic processing streams in auditory cortex.

نویسندگان

  • Charles C Lee
  • Kazuo Imaizumi
  • Christoph E Schreiner
  • Jeffery A Winer
چکیده

The basis for multiple representations of equivalent frequency ranges in auditory cortex was studied with physiological and anatomical methods. Our goal was to trace the convergence of thalamic, commissural, and corticocortical information upon two tonotopic fields in the cat, the primary auditory cortex (AI) and the anterior auditory field (AAF). Both fields are among the first cortical levels of processing. After neurophysiological mapping of characteristic frequency, we injected different retrograde tracers at separate, frequency-matched loci in AI and AAF. We found differences in their projections that support the notion of largely segregated parallel processing streams in the auditory thalamus and cerebral cortex. In each field, ipsilateral cortical input amounts to approximately 70% of the number of cells projecting to an isofrequency domain, while commissural and thalamic sources are each approximately 15%. Labeled thalamic and cortical neurons were concentrated in tonotopically predicted regions and in smaller loci far from their spectrally predicted positions. The few double-labeled thalamic neurons (<2%) are consistent with the hypothesis that information to AI and AAF travels along independent processing streams despite widespread regional overlap of thalamic input sources. Double labeling is also sparse in both the corticocortical and commissural systems ( approximately 1%), confirming their independence. The segregation of frequency-specific channels within thalamic and cortical systems is consistent with a model of parallel processing in auditory cortex. The global convergence of cells outside the targeted frequency domain in AI and AAF could contribute to context-dependent processing and to intracortical plasticity and reorganization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connections of cat auditory cortex: I. Thalamocortical system.

Despite the functional importance of the medial geniculate body (MGB) in normal hearing, many aspects of its projections to auditory cortex are unknown. We analyzed the MGB projections to 13 auditory areas in the cat using two retrograde tracers to investigate thalamocortical nuclear origins, topography, convergence, and divergence. MGB divisions and auditory cortex areas were defined independe...

متن کامل

Temporal Coherence in the Perceptual Organization and Cortical Representation of Auditory Scenes

Just as the visual system parses complex scenes into identifiable objects, the auditory system must organize sound elements scattered in frequency and time into coherent "streams." Current neurocomputational theories of auditory streaming rely on tonotopic organization of the auditory system to explain the observation that sequential spectrally distant sound elements tend to form separate perce...

متن کامل

Rate Versus Temporal Code? A Spatio-Temporal Coherence Model of the Cortical Basis of Streaming

Abstract A better understanding of auditory scene analysis requires uncovering the brain processes that govern the segregation of sound patterns into perceptual streams. Existing models of auditory streaming emphasize tonotopic or “spatial” separation of neural responses as the primary determinant of stream segregation. While partially true, this theory is far from complete. It overlooks the in...

متن کامل

Who Goes There?

respond preferentially to complex sounds (e.g., bandOur understanding of the visual system has benefited pass noise or species-specific vocalizations) relative to markedly from the hypothesis that visual processing tones. In contrast, neurons in the core region respond occurs in two separate streams—one for what (or who) preferentially to tones relative to complex sounds. It is and one for wher...

متن کامل

Spatiotemporal signatures of an abnormal auditory system in stuttering

People who stutter (PWS) can reduce their stuttering rates under masking noise and altered auditory feedback; such a response can be attributed to altered auditory input, which suggests that abnormal speech processing in PWS results from abnormal processing of auditory input. However, the details of this abnormal processing of basic auditory information remain unclear. In order to characterize ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2004